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ABSTRACT

A computational procedure for the gravimetric determi nation;
of the deflection of the vertical is presented in this report.
This procedure, uses the square: development exclusively.
The effect is computed for the area extending from the
computation point to the outermost limits for which7 data
is available.

The mathematical: basis for the computations is the Stokes
formula for the undulation'of the geoid, and the companion
formulas of Vening Meinesz for the deflection components.
Deflection formulas of Vening Meinesz are given in the
appendix.

The deflection, components for two areas were determined
using an electronic computer and the new procedure. The
results ,of these computations were compared with hand
computations which were completed using templates with
circles and radial-lines.
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FOREWORD'

ImProVed design in gravity measuring equipment has resulted in the.
accumulation of .gravity data inr an, ever Aincreasing volume. Technology
:for processing such data has not kept pace with the continually improving
means of data. gathering. Inthe past gravity data has,,been processed
manually, by a, technique that has, become known as theclassic solution,
whereby templates consisting of. circu4lar rings and:radial lines are used.;
The accuracy of the manual solution has, been good,, but the: method is soý
laborious that the solution of a grteat manyý points Would require an excessive
amount of time. The computational procedure presented in this report
enables the rapid processing of gravity data by an automated technique. The,
storage: requirements of an electronic computer allow and encourage an in-
crease in the, accumulation of gravity data.. The, computational technique
ensures that the data will be Used f the determination Uf the, deflection
components.
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PREFACE

The fneed for the computation of deflection components, by an automated
process is universally recognized. The best method by which the deflection
components caný be obtained is perhaps subject to debate. The method pre -
sented in this report attempts to standardize storage requirements and to
minimize the. need for total number of stored gravity values. Accuracy of
the square method of computation appears to equal -that of the Classical ring
procedure. The area immediately surroundingthe point is eValuated pre -

cisely, rather than approximated. The zone method of development is' suited
advantageously to solution by electronic computer.

Appreciation is expressed to the, following individuals who have contributed
tothis technical, report:, Mr. Abraham4 Ba4ak for his valuable technical, advice,
Mr. Nathan Fishel for his contribution of comparative computations, Mr., Albert
McCahan for his contribution of gravity data,, and Mr. A., E-i Craig for the: en-
couragement and support neces sary to make the solUtion pos sible:.
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A. INTRODUCTION

When the position of a point on the earth's surface is determined by
astronomic observations, the results are referred to the direction of gravity
as defined by the leveling device on the observing instrument. Due to the
irregular distribution of masses throughout the earth, the level surface of .
reference varies from place to place in an irregular manner. The geodetic
computations are referred to the regular surface of the reference ellipsoid.
The deflection of the vertical components indicates the angular tilt between
the normal of the ellipsoid and the normal of the level surface.

The determination of the deflection components has always been a time -
consuming and tedious undertaking,. This report describes a computational
method whereby the procedure can be automated. The determination of the
effect includes the area from the computation point to the outer limits for which
data is available.

For the gravimetric determination of the deflection components, two
general methods have been employed. The first and older of the two methods
uses templates consisting of circular rings and radial lines. The procedure
consists of' a graphic determination of the anomaly value for each segment of
area. The anomaly value for each radial segment is summed; the summation
Is then multiplied by a factor which will give the two deflection components.
The method Is accurate though archaic, since each step has to be performed
manually. The method cannot be automated since the anomalies are for area
segments that have a unique reference toa given computation point.

The second method employs'a technique whereby the anomalies are per-
manently stored for areas defined as geographicquadrilaterals. This method
is referred to as the computation with squares. The greatest advantage is that
the anomaly values do not have to be re -estimated for each deflection computation.
This technique is well suited for automation, but :until now this method has been
used only for the determination of the effect of the outer area. The circular
method has been used to complete the evaluation of the inner area. The disad-
vantage here is that the manual circular method must still be used in order to
finish the determination of the deflection.

The method presented in this report is for a computational procedure accom -
plished by the use of squares. The main disadvantage of previous computation by
squares has been overcome. A new method for the summation of the anomalies
for the inner area now makes it possible to continue the deflection computation
right Up to the computation point. The advantage is that the whole operation can
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be completely automated'. The anomalies are permanently stored on magnetic tape:,
and the computatiohs. are performed in one operation on theý eiectronic computer.

A zone system of squares Will be developed for the determination of the
deflection effect., Every square in a given Zone is of the same size; It will be
shown5 that the size of the squares in any given, zone, are such. as to ensure an
accurate deflection determination..

The storage of anomalies: is a, critical ,consideration for this type of
approach,. The system imposes storage requirements which must be satisfied
in order to implement the new method.,

A new method must be compared as to accuracy and' economy with the
method that is presently being used. The hand computation method which Uses
the templates will satisfy the check for accuracy and also provide a.comiaparison
with the- new method. Two problems have been. completed by both methods and-
the results are presented in Section G.

B. STRUCTURE OF SQUARE METHOD

A zone system of squares is developed, whereby 72 squares: constitute a
zone, and each square in a given zone is. of the same size. See Figures I and, 2.
A zone is determined, by dividing a given square area into 81 smaller squares;,
the 9 innermost of these squares are deleted, and the remaining 72 squares
constitute the zone. The next zone, approaching the center., is determined by
taking the 9 squares which were deleted from ,the preceding zone and subdividing
this area into 81 squares. The 9 innermost of these squares are deleted, and the
remiaini Ing. 72 squares constitute this zone. The samne procedure is: followed With
all additional squares.

Zones are extended inward and outward. Any square in a given zone has
the relationship to any square in an adjacent zone such that. the sides of the squares,
have a ratio of 1:3 proceedingoutward and 3:1 Proceeding inward. Starting with
Zone I. where the 72 squares• are one minu te squares, and proceeding outward
-through successive zones, a total of 8 zones will include all of the area of interest,.
with the exception of the inner area.. Starting with. Sub -zone: .1,, which is: just inside
Zone 1, and proceeding.inward through successive :sub -zones', an infinite number.
of sub-zones will be developed.

....
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C. CENTER OF GRAVITY OF SQUARES

The squares are: actually quadrilaterals with, limits defined, by geographic:
coordinates, of latitude and longitude,. Figures 3a and 3b show that when projected
on a plane, a. geographic, quadrilateral can be represented as an isosceles trape-
zoid. Obviously, the mean latitude and mean longitude. (Figure 3a) will not locate
the center of gravity of a quadrilateral.

" -h h-YT O I'

fimean latitudeo------- "---_-_.-.x_.o l-,_

IDI

-2 .2d

Figure.3a. Mean latitude Figure 3b.. Center of,-
and mean-longitude of a gravity of a quadrilateral.
quadrilateral.

In. Figure 3b the value x is obtained as follows:

4'' +d 2

and the value of y is determined by: 4

area of quadrilateral
See Appndi ,d x l (4). .2)ý-

* See Appendix for expressiOns •(1) .and -(2) 5
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,MTheexpressions (3) and (4) along with the mean longitude define the
center of gravity of the quadrilateral.

If the mean latitude and longitude are used' as the point to which distance
and azimuth, are determined from the computation point, a systematic error is
introduced into the computations. To eliminate this bias,the center of gravity of:
each quadrilateral is determined and- used. The following tabulation lists the:
results of several. shifts to the center of gravity for quadrilaterals:.

Example i Example 2 6 Example, 3

0Q 00° 00' 30P 000 600 00'
%0 200 00' oo, 800000

M V 100 00' 400 00' 709ý 00'
O, 09 0 54' 390' 21' 67_ 49'

M -, 0 00, OP 06' 000 39' 020 11'

D. COMPUTATION PROCEDURE

For Zones: I through 8 the computation proceeds zone by zone.. Each zone
is completely evaluated before going on to the next. The inner area begins with
Sub-zone I and continues for an infinite number of sub-zones approaching the
computation point. All of the sub -zones of the inner area are evaluated at one,
time by the summation of an infinite series..

Figure I shows that the 72 squares that constitute. a zone have: 12 different
geometric relationships with respect .to the computation point. These 12 relation.-
ships are indicated by letters a through 1. Table 1 is, given as a proof to show that
regardless of sub-zone, the same relative square in each sub-zone exerts a con-
stant deflection force upon the computation point.

For the computation of the inner sub:-zones a constant gradient throughout
the area is assumed;. this condition is more nearly true for each successive sub-
zone approaching the ,computation point. All 72 squares., for all sub-zones,
approach the central point in. precisely the, same mathematical manner, Each
square approaches the point at a ratio of two-thirds withý respect to the preceding:
square. By knowing only the first and last term of the series, the summation of,
the anomalies is as follows::

Z~g, =A*, + &g2 +Agr ..... g 5

where successive: terms of Ag are determlned by the previous and laSt term as-folloWs:

Ag, = 2/3(Ag& - Ag,- 1 ) + Ag- (6),

?A
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TABLE 1:

SUB- SUB- sUB- SUB-
ZONE1 ZONE 2 ZONE 3 "ZONE N

SIDE (') (1). (1) N-"

a 2 ,()' 2() . N

F VM a= =m

33 .__ __ __ .3. . 3(-L\-

Fb , VM 3_- 3- AI/)2M

'P. _ __ __ _ 4() _Q ,NI

2 2q 2

_If_4___"_- __,/ _ 32' • . . 3N-I:

b- M .='

4g 4T 1' 4 3) ,2 4'3
F VM = = A/0 VY M

3 3
__ _ _1 _ _ 32 3rN-V

Tf 4 VY -> -.. 4/, VM

Fkf3 -3 - f M

F f' I yI A
Tg V2 2+1 V-j2r+ I r -2r+1I 37

F~g IV =m A/0 2 yM

T_____ h_____ V_3__3r___T_7____ 3+ 3N-H V'32r r

F h Y M ===A~y

Fj 4VM= - =A/02V

1 /M Y A/ 1 M

UK- A/0,2 yM

P-1 A3+2 ji3+
5

2 3+ N. /0,2 M4
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It can be seen from (5) that if Ago is anything other than zero,, then
the series diverges, and the summation is infinite. Since the gradient rather
than the anomaly Values. creates the deflection effect, the whole anomaly pattern
of the inner area can be shifted so that AgP. is zero. This can always be
accomplished, and the summation can always be rendered finite. The following
expression achieves the shift and summation simultaneously.

= 1(Ag- Ag)(I - 0.333 )(7)

-~ bi1 -0.333,

The expression (7)reduces to (8):

Z ~ 1  .= l(Ag1k - Ago (8)

where" Ag1 is the anomaly for any one of the 72. squares of Sub-zone 1, and Ag,¢
Is the anomaly for the computation point.

With the summation of the inner area achieved by (8)L, itý is only necessary
to multiply each summation by the constant effect.

Table I was developed for a plane; when a quadrilateral is used, there will
be 72 constant geometric relationships rather than the 12 shown in Table 1. This
does not impair the accuracy nor restrict the electronic computer. The effect
for the constant geometric relationship was tested from the equator to latitude 85,
and the deviation due to the convergency of the meridians amounts toless than
1/100 of one percent.

E. EVALUATION OF DEFLECTION EFFECT OF A SQUARE ON A POINT

The area shown in Figure 4 portrays a rapid change of gradient. If the
size of the square. UVWX is very large with respect to its distance from the corn!-

putation point, then the deflection determination for the square will be in error by
an exceesive amount. If the size of the square UVWX is very small with respect
to its distance from the computation point, then the rapid change of gradient Will
be: insignificant, and the deflection determination. will be correct. The critical
consideration here is the size of a square with respect to its distance from the
point. If the squares selected are too large, there will be inaccuracies. If the
squares selected are too small, there will be too many of them, and work will. be
increased. It is the purpose of this section to show that the size of the squares
used are such that accuracy is not sacrificed. ,

: 1'



g

U

Figure C. Freerai-r anomaly
contours showng a rapid'

change of gradient.

Assume that the whole area of square UVWX (Figure 4). coincides: with
square !52d (Figure 1), andthat this area is evaluated directly as square 52d.
Square 52d is: then, divided into 9- smaller squares, and each. of these is, evaluated:
independently and the 9 deflection effects are then summed."' Square UVWX is
then successively shifted to squares 48d, 21d, and 25d. In each of these loca-
tions (52, 48, 21, and 25),, se are "d" represents the same, geometric relation-
ship. with respect to the computation point, and in each of these locations, square
UVWX retains the same orientation with U always located at the upper left-
hand corner of the square. The. same computational, procedure is.repeatedto
square UVWX in each of these four locations.

Square 52d 48d 2 Id 25d'

Square UVWX 07.'060 0.'060 -07060 o0.'060o
9,Squares X• ... 62 07061 0"01059 O'060

A 0.002 0"1001 0'.001 0'000

The effect of square UVWX is the same in each case, since a.mean anomaly.
,for the whole square was .used, and, the distance and first quadrant, azimuth angle
remain the same.. The -effect determined by the 9 smaller squares wiU:ll change,.
and the result is a more precise determination., Howevert, the largest difference
for A is only 0'"002, and it should: be noted that this difference is found in an. area-
where: the gradient, changes rapidly.
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If A in the aboveý comparisons had been large-,, it would indicate that the
square "d" .was .too large with respect to its distance from the, computation point.
This indicates from the comparisons that square "d" Is -of a reasonable size and
that good results can be obtained even when a rapid chang" Of gradientoccurs.
within the square. Every square in every zone, in the method presented in this
report, is of the same relative ýsize with respect to the computation point. The
ratio of square size and distance to the central point is a constant. Therefore,
the comparisons given would be valid for any zone.

F. STORAGE OF ANOMALIES

In order to implement the method: presented in' this report, a library of
stored anomalies must be established which is compatible- with. the computational.
,procedure. It, is envisioned that the deflection computations will' 'be for either the:
center of one-minute squares or the corners of one-ninute squares. The following
storage requirements will permit the deflection computation for every one-minute
square in a one-degree block.

Zone Area Storage Square No. of Squares

8 1.80P: x 3600  510 x 5SQ 2592'
6,7 61* x,61i r x 10  3721
5 23.6 0 x23.60  10' x 10' 20164
4 10° x 100  5' x 5' 14400;
1,2,3 2.50 x 2.5 1' x ' 22500

X 63377

The total number ofsquares required for ,an initial effort is, 63377, but as
the library of stored anomalies is increased, the requirements are more easily
satisfied. For example, consider a one-degree square adjacent to another one -
degree square for which computations have already been, performed. The additional
number of quares required for this method is 11250, which is a considerable
economy u /er the initial requirements,

'!

G.. COMPARISON OF MACHINE SOLUTION WITH CIRCULAR TEMPLATE
HAND COMPUTATION

Deflection computations for,:two specific problems were, computed and com-

pared. The first problem was a hypothetical one using bathymetric curves as
milligals6. The: second, problem owas for the deflection' effect at Columbus, Ohio.
The gravit data used, was a free air anomaly chart that had been prepared at
Ohio! State University..
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ýEach of the two problems, was computed by-tWo methods - the new. square
method: andý the circular template method.. The square, method was performed"
by an electronic computer (the: Bendix G-151-D), and, the circular method was
performed by handcomputation. The effect of the:outer corners in the square
rmethod Was deleted, so that-the comparisons could be made between areas
common to both. methods,

In, the hypothetical, problem (see; Figures 2 and 5), the outer radius for
the circular method is 21025. In the, Columbus problem-, the outer radius was-
selected. as L? 407, since this Was the largest radius for which anomaly values:
were available..

Each of the computations by the circular method was performed twice, by
two individuals,, to reduce the possibility of error in the comparisons. The
results of the comparisons, are given. below,

Hypothetical Problem

Method Used '7

Ci-cular 0"345 3'.'225
Square. O" 321 3 2185

A 0.'024 A 07040

Columbus Problem

Method Used ,

Circular -07677, -5.'605
'Square -0'.718 -57397

A -07041 A -0'.,208

"The comparisons between the automated square; method, of computation and

the hand-computed circular method indicate that accuracy requirements have been
met. It is impossible to determine which method is more accurate,, since differ-
ences of the same order as those shown. will Occur when two individuals using the
same method solve a given problem.

I?
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H. SUMMARY

Number of Computations. The machine: solution, procedure is not suited,
advantageously to solving single: deflection computatforis. However, machine

solution proceduresare highly desirable when large ,numbers of deflections
are necessary.

Accuracy of Data. A comparison of :theý circular and square ,computation
methods indicates that the results of either method are, of the same:.order of
accuracy. These results are within the limits of absolute: accuracy. Absolute
accuracy for the deflection determination is restricted to plus or minus one second

of arc. The principle reasonfor this restriction is that large areas of the earth's
surface remain unsurveyed. Figure 5 shows that the circular-square results
are comparable: because the individual wedge and square-shaped segments are
approximately the same size. Greater accuracy with either method'is limited'by
the small amount of complete gravity coverage.

Use for Data. Availability of large amounts of data would permit publi-
cation of tables and-graphic contour charts for each of the deflection components.

I. CONCLUSIONS

The time and labor involvedin computing. deflection components, by hand
has in the past greatly restricted the application of these corrections ingeodetic
problems. In the case oftriangulation alone, the deflection components can be
used to. correct the observed horizontal angles. The corrections to the horizontal
angles, which can be as large as several seconds,, are seldom applied because
of the labor- involved. When a machine solution for the deflection determination
is available, many refinements can-be, made in many different kinds of work.

The machine solution necessitates storage requirements which. areý reason-
able, and which must. be met before the automated method can beachieved. The
constantly increasing, volume of gravity data along withthe geodetic requirements
for navigational and geodetic satellites makes it. most urgent.that the computation
be automated'.

1'
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APPENDIX I

.F. A. Venirng Meineszfts Formulas for the Deflection Components

t SiG.C J d'P

cscis theo anoal inO milgal

wher is the anglar distn cmoent-rom the. -omerid~ianp1

z,. Is the geodetic a~zimuth from the south.

N
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APPENDIX II

FORMULAS FOR, THE DETERMINATION-OF THE UNDULATIONOF THE GEOID

The following formulas "are for the determination of the undulation'of the
geoid. When the gradient. is a constant in the area about the: computation point,
the undulation effect for this central, area can be determined with formula (.15).

The Stoke's4) Formula for geOid, undulation Is

;N Gfo-oS)dr (9)

where

S():= 1+ Cscj -6sin - 5cos t- 3cost iog (,si n in± (10)

For a given compartment, N Is

when -c 10, (12) is less then 5% in error..

S(o), 2 (12)

Letting

C= R do- (13),

N(, X) - CAg(, X) (14)

The summation for a given numberedý square, for successive sub-zones
approaching the computation point, may be achieved: with (15).

0. 1 .3

G+-i .EA Ag 2AC(-,)+" (15a) C(

"Intclosed form, (15a) becomes

0`0•: ":" + I (A gI.N, 2,&g (15b) •lo ,. 1i 9 . P 6 ':

The following substitution. reduces, the error to less than 1%.,

Ag ' (15c) :'d
N V .

g t 

r 

r
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